Saxitoxin Is a Gating Modifier of hERG K+ Channels

نویسندگان

  • Jixin Wang
  • Joseph J. Salata
  • Paul B. Bennett
چکیده

Potassium (K+) channels mediate numerous electrical events in excitable cells, including cellular membrane potential repolarization. The hERG K+ channel plays an important role in myocardial repolarization, and inhibition of these K+ channels is associated with long QT syndromes that can cause fatal cardiac arrhythmias. In this study, we identify saxitoxin (STX) as a hERG channel modifier and investigate the mechanism using heterologous expression of the recombinant channel in HEK293 cells. In the presence of STX, channels opened slower during strong depolarizations, and they closed much faster upon repolarization, suggesting that toxin-bound channels can still open but are modified, and that STX does not simply block the ion conduction pore. STX decreased hERG K+ currents by stabilizing closed channel states visualized as shifts in the voltage dependence of channel opening to more depolarized membrane potentials. The concentration dependence for steady-state modification as well as the kinetics of onset and recovery indicate that multiple STX molecules bind to the channel. Rapid application of STX revealed an apparent "agonist-like" effect in which K+ currents were transiently increased. The mechanism of this effect was found to be an effect on the channel voltage-inactivation relationship. Because the kinetics of inactivation are rapid relative to activation for this channel, the increase in K+ current appeared quickly and could be subverted by a decrease in K+ currents due to the shift in the voltage-activation relationship at some membrane potentials. The results are consistent with a simple model in which STX binds to the hERG K+ channel at multiple sites and alters the energetics of channel gating by shifting both the voltage-inactivation and voltage-activation processes. The results suggest a novel extracellular mechanism for pharmacological manipulation of this channel through allosteric coupling to channel gating.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel.

We studied the mechanism of action and the binding site of APETx1, a peptide toxin purified from sea anemone, on the human ether-a-go-go-related gene (hERG) channel. Similar to the effects of gating modifier toxins (hanatoxin and SGTx) on the voltage-gated potassium (Kv) 2.1 channel, APETx1 shifts the voltage-dependence of hERG activation in the positive direction and suppresses its current amp...

متن کامل

Gating currents associated with intramembrane charge displacement in HERG potassium channels.

HERG (human ether-a-go-go-related gene) encodes a delayed rectifier K+ channel vital to normal repolarization of cardiac action potentials. Attenuation of repolarizing K+ current caused by mutations in HERG or channel block by common medications prolongs ventricular action potentials and increases the risk of arrhythmia and sudden death. The critical role of HERG in maintenance of normal cardia...

متن کامل

Na+ Permeation and Block of hERG Potassium Channels

The inactivation gating of hERG channels is important for the channel function and drug-channel interaction. Whereas hERG channels are highly selective for K+, we have found that inactivated hERG channels allow Na+ to permeate in the absence of K+. This provides a new way to directly monitor and investigate hERG inactivation. By using whole cell patch clamp method with an internal solution cont...

متن کامل

Inactivation gating determines nicotine blockade of human HERG channels.

We have previously found that nicotine blocked multiple K+ currents, including the rapid component of delayed rectifier K+ currents ( I Kr), by interacting directly with the channels. To shed some light on the mechanisms of interaction between nicotine and channels, we performed detailed analysis on the human ether-à-go-go-related gene (HERG) channels, which are believed to be equivalent to the...

متن کامل

Regulation of the voltage-insensitive step of HERG activation by extracellular pH.

Human ether-à-go-go-related gene (HERG, Kv11.1, KCNH2) voltage-gated K(+) channels dominate cardiac action potential repolarization. In addition, HERG channels play a role in neuronal and smooth cell excitability as well as cancer pathology. Extracellular pH (pH(o)) is modified during myocardial ischemia, inflammation, and respiratory alkalosis, so understanding the response of HERG channels to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 121  شماره 

صفحات  -

تاریخ انتشار 2003